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Viscous and resistive eddies near a sharp corner 

By H. K .  MOFFATT 
Trinity College, Cambridge 

(Received 20 June 1963) 

Some simple similarity solutions are presented for the flow of a viscous fluid near 
a sharp corner between two planes on which a variety of boundary conditions 
may be imposed. The general flow near a corner between plane boundaries at  
rest is then considered, and it is shown that when either or both of the boundaries 
is a rigid wall and when the angle between the planes is less than a certain critical 
angle, any flow sufficiently near the corner must consist of a sequence of eddies of 
decreasing size and rapidly decreasing intensity. The ratios of dimensions and 
intensities of successive eddies are determined for the full range of angles for 
which the eddies exist. The limiting case of zero angle corresponds to the flow at 
some distance from a two-dimensional disturbance in a fluid between parallel 
boundaries. The general flow near a corner between two plane free surfaces is also 
determined; eddies do not appear in this case. The asymptotic flow at a large 
distance from a corner due to an arbitrary disturbance near the corner is mathe- 
matically similar to the above, and has comparable properties. When the fluid 
is electrically conducting, similarity solutions may be obtained when the only 
applied magnetic field is that due to a line current along the intersection of the 
two planes; it  is shown that the effect of such a current is to widen the range of 
corner angles for which eddies must appear. 

1. Introduction 
It is well known that the Stokes equation for the stream function $(r,8),  

V4@ = 0, admits separated solutions in plane polar co-ordinates ( r ,  8) of the form 

$ = rAf,I(8)7 (1.1) 

where h is any number, reaI or complex, which may conveniently be called the 
exponent of the corresponding solution. In  general the form of the functionf,(O), 
involving four arbitrary constants, A ,  B, C and D, is 

fA (8 )  = A cosh8 + B  sin A8 + C cos ( A  - 2) 8 + D sin ( A  - 2 )  8;  (1.2) 

in the particular cases when h = 0, 1 or 2, this solution degenerates to the forms 

(1.3) 

(1.4) 

(1.5) 

fo(8) = A + BB -I- C82 + DO3, 
fi(S) = A cos 8 + B sin 8+ C8cos 8 + Dosin 8, 
f,(8) = A cos 28 + B sin 28 + GO + D.  

These solutions are relevant to the flow between two plane boundaries meeting 
at  a sharp corner. The boundaries may be rigid walls on which the fluid velocity 
is prescribed, or surfaces on which the stress is prescribed (the pressure distribu- 
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tion on the surface being such as to keep it plane). Three distinct categories of 
flow can be described by these separated solutions. In  the first category, a non- 
zero velocity or stress is prescribed on one or both boundaries, and the flow is 
described by a particular integral of the biharmonic equation satisfying appro- 
priate inhomogeneous boundary conditions. One such situation has been described 
by Taylor (1960); this arises when one rigid plane is scraped along another at  a 
constant velocity and angle. This and related situations are considered in $ 2 ;  
in each of these situations, the exponent h is a positive integer, whose value is 
determined on dimensional grounds. 

In  the second category either the velocity or the tangential stress vanishes on 
each boundary. The flow near the corner is induced by a general motion at a large 
distance from the corner; for example, fluid may be driven into the corner near 
one of the boundaries and out of the corner near the other-such a flow might be 
realized near the corners of a triangular container of viscous fluid when a cylinder 
is rotated anywhere inside it. I n  this case, the complementary function of the 
biharmonic equation is sought, satisfying homogeneous boundary conditions. This 
problem seems to have been first considered by Rayleigh (1920), who showed 
that no solution of the form (1.1) with integral exponent could satisfy the four 
boundary conditions. Later Dean & Montagnon (1948) showed that for angles 
between the planes less than about 146", the exponent is necessarily complex. In 
this paper, this result is interpreted as implying the existence of an infinite 
sequence of eddies near the corner; the structure of these eddies is described in 8 3. 
It is interesting that viscosity, usually a damping mechanism, is here responsible 
for the generution of a geometrical progression of eddies. The damping mechanism, 
however, is still present, and the ratio of the intensities of successive eddies is 
high. Even in the most favourable circumstance it is greater than 300, so that, 
although it should be easy enough to observe one such eddy, to observe a sequence 
of eddies might present insurmountable experimental difficulties. The presence 
of at least one solid boundary is essential to the formation of eddies; the flow 
between two free surfacest is determined in 5 3, and the appropriate exponent 
is always real. 

The flows in this second category all have finite velocity at  the corner r = 0. 
This implies that the real part of the exponent h is greater than unity. If the 
real part of h is less than unity, the velocity in the corresponding flow is infinite at  
r = 0 but tends to zero as r -+ 00. Such solutions may describe the flow a t  a large 
distance from the intersection of two planes when some steady disturbance is 
present near the origin. This is the third category of possible flows, and is con- 
sidered in § 4. Eddies appear also in this case; the dimensions of successive eddies 
increase with distance from the corner and their intensities decrease in the same 
ratios (for a given angle) as for the flows of the second category. 

In  all cases, it is important to determine for what range of values of r the Stokes 
approximation is valid. If (for the moment) we write (1.1) in the form 

$ = Arhf (0)  

7 In this paper, the term 'free surface' is used to  describe a fluid surface that is not, 
bounded by a rigid wall; it may, however, be subjected to tangential and normal stresses. 
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where A is a dimensional constant and f ( I 3 )  is of order unity, then the corre- 
sponding velocity u is of order Arp where p is the real part of h - 1.  The orders of 
magnitude of the inertial acceleration u . Vu and the viscous force vV2u are then 
given by u.Vu = O(A2r2p-l), vV2u = O(vArp-2), so that the inertial term is 
negligible provided 

Arp+l 
R=- < 1, 

V 

where R is the Reynolds number based on distance from the corner. Hence if 
Re ( A )  > 0, inertia forces are negligible for sufficiently small r,  while if Re (A)  < 0, 
inertia forces are negligible for sufficiently large r .  In the critical case in which 
h = 0, A has the same dimensions as v, and the Reynolds number is independent 
of r .  The corresponding solution, in which velocities are proportional to r-l, is 
simply the low Reynolds number limit of the exact solution of the Navier- 
Stokes equations representing the flow due to a source or sink at  the inter- 
section of two plane boundaries (Jeffery 1915). 

It is interesting to inquire whether magnetohydrodynamic forces can sign- 
ficantly alter the effects outlined above. Similarity solutions of the type (1.1) 
still exist when the only applied magnetic field is that due to a line current along 
the intersection of the two planes. Physical intuition suggests that increasing the 
current will provide a Lorentz force in the fluid which tends to  promote the 
formation of eddies near the corner. It is shown in $ 5  that when a Hartmann 
number based on the line current strength is equal to unity, eddies form, no 
matter what the angle between the bounding planes. Even if this angle is reflex, 
the same effect occurs, so that, for example, the Stokes flow near the leading edge 
of a wedge has the character of an infinite sequence of eddies if a sufficiently strong 
line current flows along the leading edge; the edge is in a sense shielded from the 
external flow. 

2. Some simple similarity solutions when a velocity or stress is 
prescribed 

The particular situation considered by Taylor (1960) is sketched in figure 1 (a) .  
The plane I3 = a is at  rest and the plane I3 = 0 is scraped along parallel to itself 
with velocity U. Near the corner, where the Stokes approximation is valid, the 
stream function is independent of kinematic viscosity v, and dimensional analysis 
shows that $ must be of the form @ = Urfl(13); the corresponding velocity com- 

The boundary conditions 

fm = 0, f;m = 1, fi(4 =fW = 0, 

fl = - (sin2a-a2)-1{a(I3sinO-asina)-Osin (0-cc)sina). 

determine the constants A ,  B, C and D in (1.4), giving after a little simplification 

(2.1) 
A similar situation arises when a flat plate is drawn into a viscous fluid with a 

free surface (figure 1 ( b ) ) .  Surface tension is neglected, and it is supposed that 
1-2 
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gravity keeps the free surface horizontal. The boundary conditions for the 
situation of figure 1 b are 

f1C-a) = 0, f ; ( - a )  = 1, fl(0) =f ; (o)  = 0,  

fl(8) = (sina cosa-a)-l(8cos 8:sina-cccos asinB). 

and the corresponding form off,(@ is 

(3.2) 

The velocity of particles on the free surface is 

). (3.3) 
sin a - a cos a 
a-sina cosa a-s ina cosa 

( a  - sin a)  (1  + cos a)  zc, = Uf i (0 )  = - u -) = - U { L  

e=o 
-U 

e=o 

e= -a (4 @I.. 
FIGURE 1. Flow in a corner, characterized by a boundary velocity U .  

The second form for us shows that the fluid particles on the free surface move 
towards the corner with a speed independent of r and less than the speed of the 
plate U .  The speed of the particles suddenly increases to the value U as they meet 
the plate and turn the corner. This infinite acceleration is brought about by an 
infinite stress and pressure (both of order r - l )  on the plate at the corner. The 
solution breaks down very near the corner where the free surface must be distorted 
both by surface tension and by pressure gradients of the order of the weight (per 
unit volume) of the fluid. 

Certain simple flows exist that are described in a similar way by stream 
functions of the type (1.1) with exponent h = 2. Consider, for exaniple, the flow 
between two hinged planes 0 = * a  which rotate relative to each other with 
angular velocity - 2w (figure 2 (a) ) .  The bisecting plane maybe chosen as the plane 
8 = 0. The flow is unsteady (da/d t  = - w ) ,  but the acceleration terms of the 
equations of motion are negligible in the region near 0 defined by wr2/v 4 1. The 
stream function must, on dimensional grounds, be of the form 

The boundary conditions implied in figure 2 (a) are 

f2 (a)  = - f 2 (  -a )  = $, f; ,(a) =f;,( -a )  = 0. 

Applying these to the function (1.5) gives the appropriate solution 

f 2 ( S )  = $(sin 2a - 2a cos 2a)-l (sin 28 - 28 cos 2a). 
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The streamlines are indicated in the figure. The corresponding pressure distribu- 
tion is of order log r near the corner. The same solution, in the region -a < I9 < 0 
alone, describes the flow between a rotating plane and a horizontal free surface. 
(Here again, surface tension and large pressure gradients must distort the free 
surface very near the corner.) 

Another example of a flow that is described by a solution with exponent h = 2 
is sketched in figure 2 (b) .  Here the wall I9 = 0 is at rest and a constant stress 7 is 
applied to the free surface 0 = a. The boundary conditions are 

(4 (6) 
FIGURE 2. Flow in a corner characterized (a)  by an angtilnr vclocity w ,  and 

( b )  by a surface stress 7. 

Hence I+? is proportional to ~ / v p  and must take the form 

with boundary conditions 
f2(0) =fL(O) = 0, fL(a, = 0, &(a) = 4. 

These define the solution 

= k(cos2a- l)-l{(cos2a- l)cos20+sin3a sin20-28siilZa+ l}. (3.6) 

3. Flow near a sharp corner induced by an arbitrary disturbance 
at a large distance 

If two rigid boundaries are fixed a t  an angle 2a, it is possible to induce a flow 
near the corner simply by stirring the distant fluid. It may be anticipated that the 
flow pattern sufficiently near the corner may be to some extent independent of 
the nature of the energy input a t  a large distance, It is the purpose of this section 
to describe the nature of the asymptotic flow near the corner. A mathematical 



6 H .  K .  Moffutt 

solution of this problem was partially determined by Dean & Montagnon (1948), 
but the solution will be rederived here in a form more amenable to interpretation. 

We assume that in the Stokes regime the stream function can be expanded in a 
seriest of the form m 

1 
@ = r, A,.XnfA,f@)7 (3.1) 

where the A,, are suitably chosen and ordered so that 

1 < Re(A,) < Re(&) < .... 

8-a 

8=-a 

2a 

Antisymmetrical S jmmetrical 

FIGURE 3. Flow in a corner between rigid boundaries, induced by an arbitrary two-dimen- 
sional agitation a t  a large distance. 

The A, are constants. If the A, are complex, the real part of (3.1) is understood 
to be relevant. The first of the inequalities following (3. I) ensures that the velocity 
vanishes at  the intersection. Sufficiently near the corner the first term dominates 
and 

provided A, + 0. - - 

Clearly the stirring force may produce either an anti-symmetrical or a sym- 
metrical flow pattern near the corner (figure 3). The corresponding stream 
function $(r, 8)  is an even or odd function of 8, respectively. The general flow 
will of course be a mixture of the two, but it is convenient (and permissible, 
in view of the linearity of the Stokes equation) to consider the types separately. 
In the symmetrical flow, the stress component ( l / r )  &/a8 vanishes on 8 = 0, so 
that again the flow between a rigid boundary and a free surface (8 = 0)  will be 

f One particular case, in which the outer stirring mechanism is specified, has been 
completely solved and the constants An in the expansion (3.1) obtained explicitly. It is 
supposed that the motion is generated by the motion of ‘sleeves’ inserted in the boundaries 
8 = & a in the region a < r < b, each sleeve moving with uniform velocity V.  The problem 
is solved using the Mellin transform, and the series (3.1) emerges as the sum of the residues 
a t  poles in a contour integral. The details of this solution are in course of publication 
(Moffatt 1964). 
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simultaneously determined. If 3a > T ,  the flow is that round or past the leading 
edge of a wedge (figure 4). 

The spreading of the streamlines implied by the retardation as the corner is 
approached is worth noticing. The streamline pattern in the antisymmetric case 
is t o  be contrasted with that of the potential flow of an inviscid fluid. 

0 = a  

Antisymmetrical 
(4 

Symmetrical 
( b )  

FIGURE 4. The general viscous flow near a corner of reflex angle. 

3.1. An,€isymmetric $ow between rigid boundaries 

For this type of flow, fn(0)  is even, so that the constants B and D in (1.2) vanish 
and 

Both velocity components vanish on .4 = 

f,,(e) = A cos he + c cos ( A  - 2) e. (3.3) 

a provided f ( u) = f ’( _+ a)  = 0, so 
that 

Acoshu+ccos(h-2)a = o,\ 
(3.4) 

Ah sin ha + C ( h  - 2) sin ( A  - 2) a = 0, j  

Hence for a non-trivial solution, h satisfies an equation which reduces to the form 

sin3,uu = -,usin2a where ,u = h-1. (3.5) 
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It was noticed by Dean & Montagnon that when 2a is less than a critical angle 
2a, say, approximately equal to 146", this equation admits no real solutions 
(other than ,u = 0 which is physically irrelevant here, since for A = 1 the appro- 
priate form forfn(8) is (1.4) rather than the form (3.3) used above). As 2aincreases 
from 2a, to n, the number of real solutions of (3.5) increases from one to infinity. 

The complex solutions, when 2a < 2a1, may be determined by writing 
p = p + iq, whereupon (3.5) gives the two real equations 

sin 2ap cosh Sap = - p  sin 2a, 
cos 2ap sinh Zap = - q sin 205, 

or, in terms of the variables 6 = 2ap, y = 2aq and the positive parameter 
sin 6 cosh 7 = - kt, k = sin2a/2a, 
cos < sinh 6 = - ky. (3.6) 

2%" 61 71 lnp1 1nw1 6 2  

0 4.21 2.26 0.00 5.87 7.50 
10 4.21 2.25 0.24 5.87 7.50 
30 4.22 2.20 0.75 6.02 7.50 
50 4.24 2.11 1.30 6.32 7.52 
70 4.26 1.97 1.94 6.79 7.54 
90 4.30 1.77 2.79 7.63 7.57 

110 4.35 1.47 4.10 9.29 7.61 
130 4.42 1.02 6.98 13.60 7.66 
140 4.46 0.64 11.91 21.75 7.68 

- 7.70 150 - 
- 7.73 

- 2a1 4.48 0-00 GO co 

2% 

- - 
- - - 

7 2  lnp2 
2.76 0.00 
2.76 0.198 
2.72 0.606 
2.63 1.04 
2.51 1.53 
2.32 2.13 
2-02 3.00 
1.62 4.40 
1.35 5.68 

0.95 8.65 
0.00 co 

In w2 
8.53 
8.53 
8.66 
9.07 
9.64 

10.43 
11-83 
14.85 
17.89 

25.20 
- 

03 

TABLE 1. Length and velocity scale factors for corner eddies. 

Clearly, any solution (6%, 11,) of these equations must be such that both sin gn and 
cos gn are negative, and this condition is satisfied provided 

It is, moreover, not difficult to see that there is a solution (<,, yn) of (3.6) with 6, 
in the range (3.7). The corresponding eigenvalue A, is given by 

(2%- l ) n  < 6% < (2%-&)7r. (3.7) 

A, = 1+(2a)-1([,+iyn). (3.8) 
Interest centres chiefly on the value of A,, since as observed already (equa- 

tion (3.2)), it  will determine the asymptotic behaviour near the corner. The values 
of this quantity corresponding to angles 2a greater than in were given by Dean & 
Montagnon. We are more interested here in acute angles, and the values of 6, 
and yl as calculated from (3.6) for different values of the angle 2a are given in 
table 1. The corresponding values of A, may be easily deduced. 

The interesting feature of the solution that is implied by the complex exponent 
is the sequence of eddies that must be induced near the origin. To see this it is 
simply necessary to write the asymptotic stream function in the form 

$ N rh1 ( A  cosh,8+ G cos (A1- 2 )  0) 

[cos Ale cos (A, - 3 )  a - cos (A, - 2 )  0 c ~ s A , ~ ] ,  (3.9) 
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where A' = Ar,"lsec (A, - 2) a, ro being an arbitrary length scale, whose significance 
will emerge later. The transverse component of velocity on the plane 8 = 0 is then 

where u + ib = - A, A"c0s (A, - 2) a - cos A, a].  

Now 
Pl+l+i!71 

= (k) = (k)pl+lexp (iqllnr/ro) 

= (:)*I+, [cos (q,lnk) +isin (qllnk)], 

and since the real part of the expression for vo=o is understood, we have 

vo=o - Re (a  + ib) f - (')*1+1 - [,,, (qlln:) +isin (qllnk)] 

= y -  1 (-) r pi+, sin (qllnc+c), r say. 
r ro 

(3.10) 

This expression changes sign infinitely often as the point r = 0 is approached. 
In fact v6=o = 0 for values of r satisfying 

r 

r0 
q,ln-+€ = -nn- (n = 0 , 1 , 2 ,  ...), 

i.e. y = To (e-d!7i) e-nrki = y n,  say. (3.11) 

It is clear that rn is the distance of the centre of the nth eddy (counted from any 
chosen eddy) from the corner. Note that 

(3.1 1 a )  

so that the dimensions of successive eddies fall off in geometric progression with 
common ratio p1 = en'ql, depending only on the angle 3a as the corner is ap- 
proached. The absolute size of the eddies, however, is proportional to the length 
scale ro, which is determined (as is the parameter c) by conditions far from the 
corner where the stirring forces agitate the fluid. 

The velocity ug,o has a local maximum at the points 

r = rn+g = (ro e-€'*l) exp [ - (n + 4) 77/q1], 

and the velocity at  these points is 

Y v=- rpl+lrpni& = un+t, say- 
0 

This may be taken as a measure of the 'intensity' of consecutive eddies. The 
intensities therefore fall off in geometric progression with common ratio 

(3.12) 

a quantity which also depends only on the angle 2a. 
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The parameters p1 and a, seem to provide the best description of this sequence 
of eddies; their logarithms are given in table 1, and these are displayed for the 
relevant range of the angle 2a in figure 5. It will be observed that p1 is of order 
unity, so that adjacent eddies are of comparable size, for values of 2a up to about 
40", but for larger corner angles p1 increases to about 10 at 2a = 90' and very 

6' 

4 -  

2 -  

I 

0 30 60 90 120 150 
2a0 

FIGURE 5 .  Intensity and scale factors for symmetric and antisymmetric corner eddies. 

rapidly when 2a approaches 146". The relative intensity of adjacent eddies is 
always large, its minimum value, amin x 365, being attained in the limiting case 
2a = 0. For a right angle, ml NN 2000 and the eddy intensity falls off very rapidly 
as the corner is approached. The relative eddy sizes and intensities are indicated 
in figure 6 for two different corner angles, 2a = 20" and 60". The relative dimen- 
sions of the eddies are approximately correct, but their shapes have not been 
calculated exactly and are only indicated schematically. All the eddies (for a 
given corner angle) are geometrically and dynamically similar, but with suc- 
cessive changes of length and velocity scales represented by the factors p ,  and ml. 
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When 2a > 146", equation (3.5) has a real solution p which was tabulated by 
Dean & Montagnon. It decreases continuously from the value 1.76 when 
2a = 146" through 1.00 when 2a = 180" (simple shear flow) to 0.50 when 
2a = 360" (flow round the edge of a flat plate). Thus eddies do not appear under 
general conditions if 2a > 146" (although under certain artificial conditions far 

FIGURE 6. Sketch of streamlines in corner eddies (a)  for 2a = B O O ,  ( b )  for 2a = 20"; the 
relative dimensions of these eddies are approximately correct,, and the relative intensities 
are as indicated. 
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from the corner, the leading coefficients in the expansion (3.1) might vanish, and 
the critical angle at  which eddies disappear would then be greater than 146'). 

It is easy, in principle, to derive the equations of the dividing streamlines on 
which @ = 0. For, returning to (3.9)) it is clear that @ may be written in the form 

II. = (~)p+l (cos(q ln~)Reg(B)-s in  ( 2  qln- Img(8) 1 
Hence the dividing streamlines are given by 

r n 
so that gln- = $(O)---nn 2 (n = 0 , 1 , 2 ,  ...I, 

TO 

or (3.13) 

Since #(O) can, in principle, be computed, this equation gives explicitly the shape 
of the nth dividing streamline. 

FIGURE 7. The eddy pattern in the limit 2a + 0; the source of the fluid motion is a rotating 
cylinder between the planes y = _+ a. 

The limiting case 2a --f 0 is of peculiar interest. The limiting form of the stream 
function II. was given (in terms of the complex variable z = reio) by Dean & 
Montagnon, but the implication of a sequence of viscous eddies again seems to 
have escaped attention. The limit is taken by first fixing one point on each plane 
(not the vertex) and then allowing the angle 2a to decrease, so that in the limit 
we consider the flow between two parallel planes at  some distance from an 
arbitrary disturbance. The simplest experimental set-up might be to set the 
fluid in motion by rotating a cylinder with constant angular velocity between the 
two planes (figure 7).  The appropriate stream function @ for the flow at a large 
distance may be determined either by taking the appropriate limiting form of 
(3.9), or more simply by looking for a suitable solution of the equation V 4 ~  = 0 

II. f ( Y )  e-k's' ,  (3.14) 
of the form 

in Cartesian co-ordinates (x, y), the origin being in the neighbourhood of the 
disturbance. If the even function f (y) satisfying the differential equation, viz. 

f (y)  = A cos ky +By sin ky, (3.15) 

is made to satisfy the boundary conditions f = f '  = 0 on y = k a, the parameter k 
is found to satisfy the equation 

2ka + sin 2ka = 0,  
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which is simply the limiting form of (3.5) as a + 0, pa + ka. As already observed, 
this equation has no real solution, and the relevant imaginary solution (i.e. that 
with smallest positive real part) is 

(3.16) 

from table 1. The eddies implied by this solution are all of the same size; the 
wavelength of the disturbance far from the cylinder is approximately 

27l 27l.2a - - _ _ _  - 5*56a, 
I m k  - 2-26 

(3.17) 

and the damping factor (i.e. the relative intensity of successive eddies) is 
approximately = 425.87 M 350. (3.18) 

The streamlines must have the form indicated in figure 7. 

3.2. Flow between a rigid boundary and a free surface 
For this type of flow f,,(O) is odd, so that A = C = 0 in (1.2) and 

f , ( O )  = B sin hO+ D sin ( A  - 2)  8. (3.19) 

This represents either symmetrical flow between the planes 8 = +a or flow 
between the rigid boundary 8 = -a  and the free surface 8 = 0. The boundary 
conditions in this case lead to the equation 

sin 2pa = + p sin 2a where p = h - 1. (3.20) 

This equation has no real solutions if a < a2 M 7 8 O ,  and eddies therefore form in 
the corner between a free surface and a rigid boundary if the angle is less than 
this critical value. 

The imaginary roots 2ap = C2 + i y ,  of (3.30) having the least possible positive 
value of t2 (between 277 and ST) have been calculated and are also listed in table 1. 
The logarithms of the scale and intensity factors p2 and m2 which characterize 
these eddies are also listed. It will be noticed that p2 < p1 for all a, so that their 
dimensions fall off less rapidly than those of the corresponding eddies in the 
former case, but w2 > wl and the intensity in fact falls off very much more 
rapidly for the second type of eddy. 

When 2a > 2a, M 156") equation (3.20) has a real root p which decreases from 
2.84 when 2a = 2a2 through 2.00 when 2a = 180" to 0.50 when 2a = 360". This 
last value gives a stream function proportional to rg representing a symmetrical 
Aow near the Ieading edge of a flat plate; it  is the same as that proposed by 
Carrier & Lin (1948)) for the flow near the leading edge of a flat plate in a uniform 
stream parallel to the plate. 

The stream function again tends to a simple limiting form when a -+ 0, and 
describes the flow far from a two-dimensional disturbance in a fluid lying on the 
plane y = 0 and having a free surface y = a. The flow once again exhibits eddies, 
whose dimension in this case is approximately 

in the x-direction. The damping factor is e5.53 M 5000, so that to observe even one 
eddy in this case might be a matter of considerable experimental difficulty. 
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3.3. Flow between two free surfaces 

The case of flow between two intersecting free surfaces is perhaps less realistic, 
although such a situation has been observedin experiments in whicha bubble of air 
rises through a very viscous liquid (B. G. Cox, private communication). It seems 
worth while including the case here simply by way of contrast with the preceding 
cases, because i t  appears that eddies can in no circumstances form near a corner 
bounded by two free surfaces. The presence of at least one solid boundary is 
crucial as far as the possible formation of eddies is concerned. 

Only the antisymmetric flow between the boundaries B = k CL is considered, 
(the symmetrical flow is very similar) and the stream function is again assumed 
to be of the form (1.1) with 

fh(B) = A cos hB + B cos ( A  - 2) 0. (3.21) 

It is assumed that the positions of the free surfaces B = 5 a are maintained by 
the application of the appropriate pressure distribution which can be calculated 
from the stream function (3.28). The conditions satisfied on the free surfaces are 

fA( & a)  = fi( 5 a)  = 0 ,  (3.22) 

(3.23) } 
so that AcosAafBcos(h-2)a = 0, 
and Ah2cosha+B(h-2)2cos(h-2)a = 0. 

Hence, eliminating A and B, 

(h-1)coshacos(A-2)a = 0. (3.24) 

Now h + 1, for in this case the form (3.21) is inappropriate, so that either 

or 
ha = (n+Q)r  and B = 0, (3.25) 

(A-2)a = (n++)n and A = 0, (3.26) 

where 9% is any integer. Thus h is real, precluding the possibility of eddies; and 
choosing the smallest possible value of h not less than unity gives 

h = 2- r /2a  if 2a  > n 
n/2a if 2a < n (3.27) 

with corresponding stream functions 

(3.28) 

The flow sufficiently near the corner is therefore rotational if 2a > n-, but irrota- 
tional if 2a < n. These results are in striking contrast with those obtained in 
$0 3.1 and 3.2. 

The situation here contemplated is artificial to the extent that an appropriate 
pressure distribution must be applied on the planes 19 = k a in order to balance 
the total normal stress implied by the stream-function (3.28). In  the context of 
the bubble problem, it is relevant to inquire whether this pressure can be pro- 

4 = Br(2- -n /2u)~~~ (n8/2a) if 2a > n, 
Arr/Zu cos (nB/2a) if 2a  < rr. 
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vided by the motion (possibly rotational) of a nearly inviscid fluid in the region 
(81 > cc; but this problem is rather far removed from the central topic of this 
paper and will not be pursued further here. 

4. The asymptotic flow at a large distance induced by a disturbance 
near the corner 

All the results obtained in $ 3  may be reinterpreted in terms of the flow at a 
large distance from a corner induced by a disturbance near the corner (e.g. a line 
source of vorticity at  the corner). It was observed in the introduction that the 
Stokes approximation is valid far from the corner if the real part of the exponent 
h of the stream function describing the flow is negative. It is therefore natural to 
look again for a stream function of the form (1.1) with Re ( A )  < 0 satisfying a set 
of four boundary conditions corresponding to either rigid or free boundaries. 

The same relations for the exponent (equations (3.5) and (3.20)) are obtained 
in the cases considered in § Q  3.1 and 3.2. Clearly if either of these equations is 
satisfied byp( = h - 1) = p l ,  say, then it is also satisfied by ,u = -pl. This provides 
the interesting result that if ?h = rhfn(8) (Re ( A )  > 1)  is the Stokes flow near a 
corner between either two rigid boundaries (case (i)) or a rigid boundary and a 
free surface (case (ii)), then 

is a solution of the Stokes equation V4@ representing a flow far  from a corner of 
the same angle, and satisfying the correct boundary conditions (in either case); 
the velocity components of the corresponding flow fall off as rh+l  for large r. 
Only if Re@) > 2 does the corresponding Reynolds number decrease as r 
increases. This condition is satisfied provided 

?h = r-A+2f-*+2(s) (4.1) 

1 2a < 180" 

a 5 126" 

in case (i), 
in case (ii), 

so that, in particular, in all cases where eddies exist, the form (4.1) provides an 
asymptotic flow consistent with the Stokes approximation. The dimensions and 
intensities of adjacent eddies are again in the same ratios (for a given angle) as 
before, but the intensities now decrease with increasing distance from the corner. 
The flow patterns of figure 6 may now be reinterpreted as the flow induced far 
from the corner by a general disturbance near the corner, but with the indicated 
intensities in reverse order. 

If a exceeds either of the limits set by (4.2) the velocities implied by the stream 
function (4.1) fall off more slowly than r--1, and at  a large distance from the corner 
inertia forces must be taken into account, even if velocities near the corner are 
small enough for the Stokes approximation to be valid. 

Similar observations may be made regarding the flow between two free 
surfaces, but the case is too artificial to merit further consideration here. 

5. The effect of an electric current along the intersection of the 
two planes 

Returning now to the problem of flow near a sharp corner, we suppose that 
the fiuid is endowed with electrical conductivity r and magnetic permeability p, 
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and we investigate the effect of a line current J along the intersection of the two 
planes. It is intended only to demonstrate the qualitative effect of such a current, 
and only one case will be considered, viz. that of antisymmetric flow between two 
rigid boundaries 0 = fa. The magnetic Reynolds number R,, based on the 
velocity a t  distance r from 0,  is proportional to the Reynolds number R 

R,(r) = 4npvvR(r) (Gaussian units). (5.1) 

Hence, sufficiently near 0,  R, as well as R will be small. In  fact, for typical 
laboratory materials, 4n-pvv < 1, so that the approximation R, < 1 is likely to 
be valid over a much wider range than the approximation R < 1 .  

The magnetic field due to the current J is 

H , =  0,-,O , ( “,“ ) 
and the induced current in the fluid is 

j = CTUAH,, = ( O , O , F ) ,  

( 5 . 2 )  

( 5 . 3 )  

(in the assumed absence of any applied electric field in the x-direction). The 
Lorentz body force in the fluid is then 

where M = &J/v*. (5 .5 )  

M is the appropriate Hartmann number for the problem. This body force is a 
radial force opposing the radial velocity and may therefore be expected to 
promote the formation of eddies near the corner. 

The linearized vorticity equation becomes 

or, with the substitution 

If @ K rhfA(0), the equation for fn(e) becomes 

For general M ,  the problem of determining A is straightforward, though tedious; 
the general even solution of (5.7) is of the form 

f n  = A cosp, e + c Cosp,, e, (5.8) 
wherep?(h) andpi(h) are the roots of the quadratic equation associated with (5.7). 
The function (5.8) satisfies fA(  f a) =ti( f a) = 0 provided 

p,tanpla = p2tanp2a,  (5.9) 
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an equation that defines implicitly the possible values of A. Clearly these values 
could be found numerically. 

There is one case, however, which can be analysed without recourse to numerical 
methods, and which sufficiently indicates the trend. This is the case M = 1, when 
(5.7) may be reduced to the simpler form 

[ a 2 p e 2 +  A(A - 2)12f,, = 0, 

p = + [h(h - 2)]4  

with general even solution 

where 
f A  = A cospUe + DBsinpO, 

(5.10) 

(5.11) 

(5.12) 

(the root with positive real part being chosen). The boundary conditions 
f A  = fi = Oone = +aimply that 

A cospu + Da sin pa = 0, 
- A p  sin pa + D sin pa + Dpa cospa = 0, 

so that, eliminating the ratio AID, 

sin 2 p  + 2pa = 0. (5.13) 

This equation admits no real solutions (other than the irrelevant one ,u = 0 )  no 
matter what the angle a. It does, however, admit complex solutions, the one with 
least positive real part being 

p = p1 = ( 2 W ( 5 0  + iyo), (5.14) 

where to ri: 4.21, qo 4 2-26 are simply the roots of (3.6) with k = 1. The corre- 
sponding value of A, from (5.13), is 

h = 1 + (1 +p2)'f 

= 1 + (2a)-l[4a2 + 5; - 7; + 2ito yo]* 

+ 1 + (2a)-l (4u2 + 12.2 + 19.2i)*, 

(the positive sign being chosen to make Re(h) > 1). This value of h has been 
calculated for a few different values of 2a, and it is compared in table 2 with the 
corresponding value of h in the absence of a magnetic field. The most striking 
effect of the magnetic field is that reversed flow and eddies now form for any angle 
2a (including reflex angles). The eddies that form in such a case are the direct 
result of the increased ohmic dissipation of energy, and they may fairly be called 
resistive in type. It is reasonable now to infer that as M increases from 0 to some 
value M, < 1, the maximum corner angle for which eddies form increases from 
146' to 360" (there is no reason to suspect non-uniform behaviour in the limit 
M 3 0); and that for M > Mc, corner eddies invariably form for any angle 2a. 

The other effect of the magnetic field, indicated by the results of table 2, is 
that the real part of h is greater when M = 1 than when M = 0, an effect that is 
very slight for small angles, but pronounced for reflex angles. This means that 
the velocity falls off more rapidly as the corner is approached when electric 
currents are present, as might be expected in view of the second available sink of 
energy in this region. 

2 Fluid Mech. 18 
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The imaginary part of h is small for reflex angles in the case M = 1, so that the 
ratio of the dimensions of consecutive eddies is also small. It seems likely, how- 
ever, that as M increases the tendency for Im ( A )  to increase (for any angle) will 

h h 
2a0 M = l  M = O  
20 13 + 6.3; 13 + 6-2i 
90 3.8 + 1-4i 3.8 + l.li 

140 2.9 + 042 i  2.8 + 0.2% 
360 2.1 +0.021; 1.5 

TABLE 2. The effect of the electric current on the exponent A. 

FIGURE 8. Sketch of the symmetric eddy pattern in the flow past a wedge vertex at high 
Hartmann number. An electric current J flows along the intersection of the two planes. 

continue, and that the ratio of dimensions of consecutive eddies will corre- 
spondingly increase. The type of streamline pattern suggested by these con- 
siderations for the symmetric flow at large M near a wedge vertex is sketched 
in figure 8. 
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